IMPLICATION OF BIOPESTICIDES FOR INSECT PEST MANAGEMENT: AN ALTERNATIVE OF CHEMICAL PESTICIDES

Jaher Ahmed

Department of Entomology, Sylhet Agricultural University, Sylhet 3100, Bangladesh.

Mohon Nandi

Department of Entomology, Sylhet Agricultural University, Sylhet 3100, Bangladesh.

Huma Amin

Department of Plant Protection and Forest Resource, Sustainable Forest Management Research Institute (iuFOR), University of Valladolid, Palencia, Spain.

ABSTRACT: The growing global concerns about ecological and health issues have raised the necessity of managing insect pests without the use of chemical pesticides. This fact has prompted to explore alternative methods of pest management that are efficient and environmentally sustainable. This review highlights the advancement of biopesticides, including their application with specificity to target pests as well as constraints and prospects with market status. Biopesticides, which are derived from natural sources such as plants, bacteria, fungi, and insects, provide a sustainable and environment friendly solution for controlling pests while minimizing harm to non-target organisms. The biopesticide market has been increasing globally, and thousands of commercially marketed biopesticides are now used against insect pests. Worldwide, most marketed biopesticides are derived from several subspecies of Bacillus thuringiensis, which control diversified orders of pests, including Lepidoptera and Diptera. Although, biopesticides have shown significant efficacy, restricted formulation approaches have limited their overall acceptance due to lower acute activity and a higher degradation rate. The review highlights the importance of ongoing research, development, and regulatory support for biopesticides to a large extent. Then, biopesticides have become a beacon of hope for a safer and more eco-friendly approach for controlling pests.

 

Keywords: Biopesticide, biopesticide market, eco-friendly management, microbial pesticide, pest management.

REFERENCES

AHMAD, N., SARWAR, M., KHAN, G. Z., TOFIQUE, M. & SALAM, A. 2011. Efficacy of some plant products and synthetic chemicals to manage the outbreak of mealy bug (Maconellicoccus hirsutus) in cotton. J. Agric. Biol. Sci. 3: 16-21.

 

ALI, S., ZAFAR, Y., ALI, M. G. & NAZIR, F. 2008. Bacillus thuringiensis and its application in agriculture. African J. Biotechnol. 9: 2022-2031.

 

ARORA, N. K., KHARE, E. & MAHESHWARI, D. K. 2010. Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Maheshwari DK (ed.) Plant growth and health promoting bacteria. Pp. 97-116.

 

ARORA, N. K., VERMA, M., PRAKASH, J. & MISHRA, J. 2016. Regulation of biopesticides: global concerns and policies. In: Bioformulations for Sustainable Agriculture. Pp. 283-299.

 

ARTHURS, S. & LACEY, L. 2004. Field evaluation of commercial formulations of the codling moth granulovirus: persistence of activity and success of seasonal applications against natural infestations of codling moth in Pacific Northwest apple orchards. Biol. Control. 31: 388-397.

 

ASHAOLU, C. A., OKONKWO, C., NJUGUNA, E. & NDOLO, D. 2022. Recommendations for effective and sustainable regulation of biopesticides in Nigeria. Sustainability. 14: 1-14.

 

BUSINESS WIRE. 2010. Research and markets: the 2010 biopesticides market in Europe & company index – opportunities exist which could raise the total market to $200 million by 2020. New York.

 

BUTU, M., RODINO, S. & BUTU, A. 2022. Biopesticide formulations-current challenges and future perspectives. In Biopesticides. Pp. 19-29. Woodhead Publishing.

 

CABI. 2010. The 2010 worldwide biopesticides: market summary. CPL Business Consultants, London. P. 40.

 

CAMPOS-HERRERA, R., BARBERCHECK, M., HOY, C. W. & STOCK, S. P. 2012. Entomopathogenic nematodes as a model system for advancing the frontiers of ecology. J. Nematol. 44: 162-176.

 

CHANDLER, D., BAILEY, A. S., TATCHELL, G. M., DAVIDSON, G. & GREAVES, G. W. P. 2011. The development, regulation, and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1573: 1987-1998.

 

CHANDLER, D., DAVIDSON, G., GRANT, W. P., GREAVES, J. & TATCHELL, G. M. 2008. Microbial biopesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci. Technol. 19: 275-283.

 

CHEN, D., MOAR, W. J., JERGA, A., GOWDA, A., MILLIGAN, J. S., BRETSYNDER, E. C., … & HAAS, J. A. 2021. Bacillus thuringiensis chimeric proteins Cry1A. 2 and Cry1B. 2 to control soybean lepidopteran pests: New domain combinations enhance insecticidal spectrum of activity and novel receptor contributions. PLoS One. 16: e0249150.

 

CPL BUSINESS CONSULTANTS. 2010. The 2010 worldwide biopesticides market summary. 1. CPL Business Consultants, Wallingford.

 

DAMALAS, C. A. & KOUTROUBAS, S. D. 2018. Current status and recent developments in biopesticide use. Agriculture. 8: 1-6.

 

DUARTE, V. S., SILVA, R. A., WEKESA, V. W., RIZZATO, F. B., DIAS, C. T. S. & DELALIBERA, J. R. I. 2009. Impact of natural epizootics of the fungal pathogen Neozygites floridana (Zygomycetes: Entomophthorales) on population dynamics of Tetranychus evansi (Acari: Tetranychidae) in tomato and nightshade. Biol. Control. 51: 81-90.

 

DUTTA, S. 2015. Biopesticides: An ecofriendly approach for pest control. World Journal of Pharmacy and Pharmaceutical Sciences (WJPPS). 4: 250-265.

 

EUPD (EUROPEAN UNION PESTICIDES DATABASE), 2010. European union pesticides database.

 

FENIBO, E. O., IJOMA, G. N. & MATAMBO, T. 2021. Biopesticides in sustainable agriculture: a critical sustainable development driver governed by green chemistry principles. Front. Sustain. Food Syst. 5: 619058.

 

GILL, R. J, RODRIGUEZ, O. R. & RAINE, N. E. 2012. Combined pesticide exposure severely affects individual and colony level traits in bees. Nature. 491: 105-108.

 

GLARE, T. R., GWYNN, R. L. & MORÁN-DIEZ, M. E. 2016. Development of biopesticides and future opportunities. In: Microbial-Based Biopesticides. Methods Molecul. Biol. 1477: 211-221.

 

GLARE, T., CARADUS, J., GELERNTER, W., JACKSON, T., KEYHANI, N., KÖHL, J., & STEWART, A. 2012. Have biopesticides come of age? Trends Biotech. 30: 250-258.

 

GLOBE NEWS WIRE. 2022b. Biopesticides market worth $9.6 billion by 2028. Exclusive report by meticulous research. www.globenewswire.com/ newsrelease/2021/09/27/2303450/0/en/BiopesticidesMarket-Worth-9-6- Billion-by-2028

 

GONÇALVES, A. L. 2021. The use of microalgae and cyanobacteria in the improvement of agricultural practices: A Review on their biofertilising, biostimulating and biopesticide roles. Appl. Sci. 11: P. 871.

 

HADDI, K., TURCHEN, L. M., VITERI JUMBO, L. O., GUEDES, R. N., PEREIRA, E. J., AGUIAR, R. W. & OLIVEIRA, E. E. 2020. Rethinking biorational insecticides for pest management: unintended effects and consequences. Pest Manag. Sci. 76: 2286-2293.

 

HAJEK, A. E., PAPIEROK, B. & EILENBERG, J. 2012. Methods for study of entomophthorales. In: Lacey LA. (Ed.), Manual of Techniques in Invertebrate Pathology. Academic Press, San Diego. Pp. 285-316.

 

HASSAN, E. & GOKÇE, A. 2014. Production and consumption of biopesticides. In: Advances in Plant Biopesticides. Pp. 361-379

 

IBRAHIM, R. A. & SHAWER, D. M. 2014. Transgenic Bt-plants and the future of crop protection (an overview). Intl. J. Agric. Food Res. 3: 14-40.

 

ICAMA. 2008. Pesticide manual, the institute for the control of agrochemicals. Ministry of agriculture, China (in Chinese).

 

ICOZ, I. & STOTZKY, G. 2008. Fate and effects of insect resistant Bt crops in soil ecosystems. Soil Biol. Biochem. 40: 559-586.

 

ISLAM, M. T. & OMAR, D. B. 2012. Combined effect of Beuveria bassiana with neem on virulence of insect in case of two application approaches. J. Anim. Plant Sci. 22: 77-82.

 

ISLAM, M. T., CASTLE, S. J. & REN, S. 2010. Compatibility of the insect pathogenic fungus Beauveria bassiana with neem against sweet potato whitefly, Bemisia tabaci, on eggplant. Entomologia Experimentalis et Applicata. 134: 28-34.

 

ISMAM, M. B. 2008. Botanical insecticides: for richer, for poorer. Pest Manage, Sci: Formerly Pesticide Sci. 64: 8-11.

 

ISMAN, M. B. 2020. Botanical insecticides in the twenty-first century fulfilling their promise. Ann. Rev. Entomol. 65: 233-249.

 

JANKIELSOHN, A. 2018. The importance of insects in agricultural ecosystems. Advan. Entomol. 6: 62-73.

 

JOHNSON, V. W., PEARSON, J. F. & JACKSON, T. A. 2001. Formulation of Serratia entomophila for biological control of grass grub. In: Proceedings of the New Zealand Plant Protection Conference. New Zealand Plant Protection. 54: 125-127.

 

JURAT-FUENTES, J. L. & JACKSON, T. A. 2012. Bacterial entomopathogens. In: Insect Pathology, second ed. Academic Press, San Diego. Pp. 265-349.

 

KABALUK, J. T., SVIRCEV, A. M., GOETTEL, M. S. & WOO, S. G. (EDS.). 2010. The use and regulation of microbial pesticides in representative jurisdictions worldwide. 99. St. Paul, MN, USA: International Organization for Biological Control of Noxious Animals and Plants (IOBC).

 

KOPPENHOFER, A. M., JACKSON, T. A. & KLEIN, M. G. 2012. Bacteria for use against soil inhabiting insects. In: Lacey LA (Ed.), Manual of Techniques in Invertebrate Pathology. Academic Press, San Diego. Pp. 129-149.

 

KUMAR, J., RAMLAL, A., MALLICK, D. & MISHRA, V. 2021. An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants. 10: 1185.

 


KUMAR, S. & SINGH, A. 2015. Biopesticides: Present status and the future prospects. J. Fertil. Pestic. 6: 1-2.

 

LACEY, L. A., LIU, T. X., BUCHMAN, J. L., MUNYANEZA, J. E., GOOLSBY, J. A. & HORTON, D. R. 2011. Entomopathogenic fungi (Hypocreales) for control of potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) in an area endemic for zebra chip disease of potato. Biol. Control. 36: 271-278.

 

LEHR, P. 2010. Biopesticides: the Global Market, Report code CHM029B, BCC Research.

 

LENG, P., ZHANG, Z., GUANGTANG, P. & ZHAO, M. 2011. Applications and development trends in biopesticides. African J. Biotechnol. 10: 19864- 19873.

 

LENGAI, G. M. W. & MUTHOMI, J. W. 2018. Biopesticides and their role in sustainable agricultural production. J. Biosci. Method. 6: 7-41.

 

LIAO Y. 2020. Residual Governmentality: Pesticide Policing in Neo-socialist China. The Asia Pacific Journal of Anthropology. 21: 416-433.

 

MARKET DATA FORECAST. 2022. Europe Biopesticide Market by Crop Type (Permanent Crops, Arable Crops, Forage & Turf Grasses, Greenhouse Crops) by Ingredients (Biochemical Pesticides, Plant Pesticides and Microbial Pesticides) by Microorganism’s Type (Bioherbicides, Bio fungicides, Bionematicides and Bioinsecticide), by Application (Seed Treatment, on Farm and Post-Harvest) and by Region – Industry Analysis, Size, Share, Growth, Trends, and Forecasts (2022 to 2027). www.marketdataforecast. com/marketreports/europe-bio-pesticide-market.

 

MARKETS & MARKETS. 2022. Biopesticides Market by Type (Bioinsecticides, Biofungicides, Bionematicides, and Bioherbicides), Source (Microbials, Biochemicals, and Beneficial Insects), Mode of Application, Formulation, Crop Application, and Region – Global Forecast to 2025. www. marketsandmarkets.com/Market-Reports/biopesticides-267.html.

 

MARKETS & MARKETS. 2012. Global Biopesticides Market Trends & Forecasts (2012–2017); Report Code: CH 1266.

 

MARRONE, P. G. 2007. Barriers to adoption of biological control agents and biological pesticides, CAB reviews: perspectives in agriculture, veterinary science, nutrition, and natural resources. 2. CAB International, Wallingford.

 

MARRONE, P. G. 2009. Barriers to adoption of biological control agents and biological pesticides. Integrated Pest Manage. Pp. 163-178.

 

MARRONE, P. G. 2014. The market and potential for biopesticides. In Biopesticides: state of the art and future opportunities. 245-258. American Chemical Society.

 

MARRONE, P. G. 2024. Status of the biopesticide market and prospects for new bioherbicides. Pest Manage. Sci. 80: 81-86.

 

MASHTOLY, T. A., ABOLMAATY, A., ELZEMAITY, M., HUSSIEN, M. I. & ALM, S. R. 2011. Enhanced toxicity of Bacillus thuringiensis subspecies kurstaki and aizawai to black cutworm larvae (Lepidoptera: Noctuidae) with Bacillus sp. NFD2 and Pseudomonas sp. FNFD1. J. Econ. Entomol. 104: 41-46.

 

MASHTOLY, T. A., ABOLMAATY, A., THOMPSON, N., EL-SAID, ELZEMAITY, M., HUSSIEN, M. I. & ALM, S. R. 2010. Enhanced toxicity of Bacillus thuringiensis japonensis strain Buibui toxin to oriental beetle and northern masked chafer (Coleoptera: Scarabaeidae) larvae with Bacillus sp. NFD2. J. Econ. Entomol. 103: 1547-1554.

 

MATYJASZCZYK, E. 2015. Products containing microorganisms as a tool in integrated pest management and the rules of their market placement in the European Union. Pest Manag. Sci. 71: 1201-1206.

 

MOOSAVI, M. R. & ZARE, R. 2015. Factors affecting commercial success of biocontrol agents of phytonematodes. Biocontrol Agents Phytonematodes. 1: 423-445.

 

MORALES-RAMOS, J. A., ROJAS, M. G. & SHAPIRO-ILAN, D. I. (ed.). 2013.  Mass  production  of  beneficial  organisms:  invertebrates  and entomopathogens. Academic Press.

 

MOSHI, A. P. & MATOJU, I. 2017. The status of research on and application of biopesticides in Tanzania. Review. Crop protection. 92: 16-28.

 

NAWAZ, M., MABUBU, J. I. & HUA, H. 2016. Current status and advancement of biopesticides: Microbial and botanical pesticides. J. Entomol. Zool. Stud. 4: 241-246.

 

NBAIR. 2017a. ICAR-National Bureau of Agricultural Insect Resources, Newsletter, September 2017, Bengaluru, India. 9: 4.

 

OLSON, S. 2015. An analysis of the biopesticide market now and where is going. Outlooks Pest Manage. 26: 203-206. https://doi.org/10.1564/v26_ oct_04.

 

PANAZZI, A. R. 2013. History and contemporary perspectives of the integrated pest management of soybean in Brazil. Neotrop. Entomol. 42: 119-127.

 

PANDYA, I. Y. 2018. Pesticides and their applications in agriculture. Asian J. Appl. Sci. Technol. 2: 894-900.

 

PUCCI, J. 2022. Brazil sets the pace for biologicals in row crops. Agribusiness Global https://wwwagribusinessglobalcom/biologicals/brazil-setsthe-pace- for-biologicals-in-row-crops/ (August 9, 2022).

 

R CORE TEAM. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R- project.org.

 

RAJPUT, V. S., JHALA, J. & ACHARYA, V. 2020. Biopesticides and their mode of action against insect pests: A review. Int’l J. Chem. Stud. 8: 2856-2862.

 

RAKSHIT, A., MEENA, V. S., ABHILASH, P. C., SARMA, B. K., SINGH, H. B., FRACETO, L., PARIHAR, M. & KUMAR SINGH, A. 2021. Biopesticides: Advances in Bio-Inoculants; Woodhead Publishing: Cambridge, UK. 2.

 

RAMÍREZ-GUZMÁN, N., CHÁVEZ-GONZÁLEZ, M., SEPÚLVEDA-TORRE, L., TORRES-LEÓN, C., CINTRA, A., ANGULO-LÓPEZ, J., MARTÍNEZ- HERNÁNDEZ, J. L. & AGUILAR, C. N. 2020. Significant advances in biopesticide production: Strategies for high-density bio-inoculant cultivation. In: Microb. Serv. Restor. Ecol. Pp. 1-11.

 

RANI, A. T., KAMMAR, V., KEERTHI, M. C., RANI, V., MAJUMDER, S., PANDEY, K. K. & SINGH, J. 2021. Biopesticides: an alternative to synthetic insecticides. Microb. Technol. Sustain. Environ. Pp. 439-466.

 

RESEARCH & MARKETS. 2022. Biopesticides Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast. 2021-2026.

 

ROWLEY, D. L., POPHAM, H. J. R. & HARRISON, R. L. 2011. Genetic variation and virulence of nucleopolyhedroviruses isolated worldwide from the heliothine pests Helicoverpa armigera, Helicoverpa zea and Heliothis virescens. J. Invertebr. Pathol. 107: 112-126.

 

RUIU, L. 2018. Microbial Biopesticides in Agroecosystems. Agronomy. 8, 235. https://doi.org/10.3390/agronomy8110235.

 

SALMA, M., RATUL, C. R. & JOGEN, C. K. 2011. A review on the use of biopesticides in insect pest management. Int. J. Sci. Adv. Tech. 1: 169-178.

 

SAMADA, L. H. & TAMBUNAN, U. S. F. 2020. Biopesticides as promising alternatives to chemical pesticides: A review of their current and future status. Online Jr. Biol. Sci. 20: 66-76.

 

SARWAR, M. 2015. Biopesticides: an effective and environmentally friendly insect- pests inhibitor line of action. Intl. J. Engin. Adv. Res. Technol. 1: 10-15.

 

SCHOLTE, E. J., TAKKEN, W. & KNOLS, B. G. 2007. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Acta tropica. 102: 151-158.

 

SEHRAWAT, A. & SINDHU, S. S. 2019. Potential of biocontrol agents in plant disease control for improving food safety. Def. Life Sci, J. 4: 220-225.

 

SEIEDY, M., TORK, M. & DEYHIM, F. 2015. Effect of the entomopathogenic fungus Beauveria bassiana on the predatory mite Amblyseius swirskii (Acari: Phytoseiidae) as a nontarget organism. System. Appl. Acarol. 20: 2451-250.

 

SHI, W. B. & FENG, M. G. 2004. Lethal effect of Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces fumosoroseus on the eggs of Tetranychus cinnabarinus (Acari: Tetranychidae) with a description of a mite egg bioassay system. Biol. Control. 30: 165-173.

 

SHISHIR, A., AKTER, A., HASSAN, M. H., KIBRIA, G., ILIAS, M., KHAN, S. N. & HOQ, M. M. 2012. Characterization of locally isolated Bacillus thuringiensis for the development of eco-friendly biopesticides in Bangladesh. J. Biopest. 5: 216.

 

SINGH, P. & MAZUMDAR, P. 2022. Microbial pesticides: trends, scope and adoption for plant and soil improvement. In: Biopesticides. Pp. 37-71. Woodhead Publishing.

 

SINHA, K. K., CHOUDHARY, A. K. & KUMARI, P. 2016. Entomopathogenic fungi. In: Omkar (Ed.), Ecofriendly Pest Management for Food Security. Academic Press, Cambridge, Edmonton, Alberta. Pp. 475-505. https://doi. org/10.1016/B978-0-12-803265-7.00015-4.

 

STEHLE, S. & SCHULZ, R. 2015. Agricultural insecticides threaten surface waters at the global scale. Proc. Natl. Academy Sci. 112: 5750-5755.

 

THAKRE, M., THAKUR, M., MALIK, N. & GANGER, S. 2011. Mass scale cultivation of entomopathogenic fungus Nomuraea rileyi using agricultural products and agro wastes. J. Biopest. 4: 176-179.

 

TOFANGSAZI, N., ARTHURS, S. P. & DAVIS, R. M. G. 2015. Entomopathogenic Nematodes (Nematoda: Rhabditida: families Steinernematidae and Heterorhabditidae). one of a series of the Entomology and Nematology Department, UF/IFAS Extension. Pp. 1-5.

 

TOWNSEND, R. J., NELSON, T. L. & JACKSON, T. A. 2010. Beauveria brongniartii–a potential biocontrol agent for use against manuka beetle larvae damaging dairy pastures on cape foul wind. N. Z. Plant Protect. 63: 224-228.

 

USEPA. 2011. Pesticide news story: EPA releases report containing latest estimates of pesticide use in the United States, USA.

 

VEKEMANS, M. C. & MARCHAND, P. A. 2020. The fate of biocontrol agents under the European phytopharmaceutical regulation: how this regulation hinders the approval of botanicals as new active substances. Environ. Sci. Pollut. Res. Intl. 27: 39879-39887.

 

WILLER, H. & LERNOUD, J. 2017. The World of Organic Agriculture. Statistics and Emerging Trends, 2017. Research Institute of Organic Agriculture (FiBL) Frick, Switzerland. BIOFACH. Pp. 38. Accessed 7 March 2018. http://orgprints.org/31197/1/ willer-lernoud-2017-global-data-biofach.pdf.

 

YANG, M. M., LI, M. L., ZHANG, Y., WANG, Y. Z., QU, L. J., WANG, Q. H. & DING, J. Y. 2012. Baculoviruses and insect pests control in China. Afr. J. Microbiol. Res. 6: 214-218.

 

ZHANG, L. & LECOQ, M. 2021. Nosema locustae (Protozoa, Microsporidia), a biological agent for locust and grasshopper control. Agronomy. P. 11: 711.

 

Previous Post
Next Post

Leave a Reply

Your email address will not be published. Required fields are marked *